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Abstract. Many experimental results suggest that more precise spike

timing is significant in neural information processing. We construct a self-
organization model using spatiotemporal patterns, where Spike-Timing
Dependent Plasticity (STDP) tunes the conduction delays between neu-
rons. The recurrent connections with a specific conduction delays are
strengthened when the input patterns are changing at a certain pe-
riod. We show that, by cooperating with short delays, long-delay connee-
tions realize topological mapping where the firing clusters are changing
smoothly in space.

1 Introduction

As a well-known clustering network in brain. there are column organizations
in cerebral cortex, where neurons are arranged to preserve sensory topological
structure [1]. Recently experimental evidence from several different preparations
suggests that both the direction and magnitude of synaptic modification arising
from repeated paring of pre- and postsynaptic action potentials depend on the
relative spike timing[2]. Song et al showed that an orderly topological map can
arise solely through Spike-Timing Dependent Plasticity (STDP) from random
initial conditions without global constraints on synaptic efficiencies, or addi-
tional forms of plasticity[3]. However, despite using the millisecond-scale model,
the patterns are composed of high firing-rate Poisson inputs, and the meaning
of temporal causal relationship is not clear.

On the other hand, many experiment results suggested that the more pre-
cise spike timing accomplish the key role in the brain. For example, multiunit
recording studies from the frontal cortex of behaving monkey suggested that a
spatiotemporal pattern of highly synchronous firing of neural populations can
propagate through several tens of synaptic connections without losing high syn-
chronicity[4]. This phenomenon is called "synfire-chain”, which brings to that
the neurons with long time-constant can convey the information keeping with
the precise spike-time information. Diesmann et al showed that through multi-
layered Feed-Forward network with Integrate & Fire neuron model, the pulse
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packet can propagate stably in the presence of background noise if the number
of neurons in a pool is large enough and yet the igniting pulse packet is synchro-
nized strong enough [5]. This propagation is due to exact timing of the excitatory
inputs. Hence, it reflects temporal coding. Additionally, several studies provide
that the heterogencous structure of the network such as the Mexican-Hat-type
connectivity can convey the quantitative information [6]. Similarly. Aviel et a)
showed that by adding inhibitory pool, synfire-chain can be embedded in a bal-
anced network [7]. This network can also utilize the quantitative information.

In primary visual cortex (V1), responses of neurons to a stimulus presented
in their receptive fields are modulated by another stimulus concurrently pre-
sented in their surrounds. Such a contextual modulation suggests an interaction
between feedback connections to V1 from other areas 18]).

In this paper. we show that, by using localized synfire-chain patterns, STDP
can strengthen the synaptic efficiencies having specific conduction delays and
then form self-organizing map whose patterns are expressed as firing clusters.
Next, we consider the case that a network is composed of synaptic connections
with two types of conduction delays. We show that. by cooperating with short
delays, long-delay connections cause topological mapping where the firing clus-
ters are changing smoothly in space.

2 Model

We use a simple Integrate & Fire neuron model, and the membrane potential V

is determined as
V= —(V = Vs) + Je(t)(V = Vi) + J()(V = V1)

with V, = V, = =70.0mV. Vg = 0.0mV, and 7v = 5ms. The synaptic inputs
Gp and G are expressed as spatiotemporal integration of synaptic efficiencies
characterized by step rise time and exponential decay

Jity =) _W,; Y 6(t-t5)exp(~(t- t5)/7) (-=E,I) (1)

where (1) is step function and the time-constant is chosen as 7p = 71 = 5.0ms.
The synaptic strength W, is a transmission efficiency of the connection. All effi-
ciencies from inhibitory neurons are assumed to have negative values (Inhibitory
synapses). while all from excitatory ones are positive (Excitatory synapses). H",lJ
corresponding to the inhibitory ones are chosen as the constant values whose
range is [0.18, 0.22]. On the other hand, Wk correspond to excitatory neurons
are modified via STDP whose range is [0, 0.05]. When the membrane potential

V reaches a threshold value Vi, = —54mV. the neuron fires and the membrane
potential is reset to Voo, = —60mV. After firing, G is kept zero during 3ms

(absolute refractory period). On these conditions, about 20 coincident excitatory
spikes elicit firing.
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Fig. 1. (a) A network model.(b) Typical behavior of this network. (¢) The whole
system of this model. There are two types of inputs.

The model neural network is schematically shown in Fig. 1(a)[9]. In many
brain areas. the temporal precision of spikes during stimulus-locked responses
can be in the millisecond range. Reproducible temporal structure can also be
found. Therefore, “delay tuning mechanism” is needed. From this viewpoint. we
regard the role of STDP as a tuning of the conduction delays of the neurons.
Some experiments results in cerebral cortex suggest that local inhibitory circuits
contribute to improve the orientation selectivity [10]. We, therefore, determined
that the inhibitory neurons receive common inputs with the excitatory ones, and
consider the case that the recurrent inhibitory conduction delays 1),’11':. I).’)' have
an identical short value D! = 1.0ms. Since the excitatory and inhibitory neu-
rons receive inputs from common layer, their firing patterns are similar to cach
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other. After short delay D’. both of them receive inhibitory recurrent spikes anq
suppress the firings of neurons, whose postsynaptic spike latencies are large. Ag
a result. this network detects coincident firing neurons with short latencies (Fig,
1(b)).
We assume that the input layer 1(IL1 in Figl(c)) has 100 excitatory neurons,
of which 25 neurons fire synchronously with a small fluctuation of dispersion ¢,
while the other 75 neurons fire randomly (10Hz Poisson spikes). Gamma-band
oscillations are widely observed in brain [11]. Therefore, we determined that
input patterns are firing periodically with a 25ms interval. Each synchronized
sets are represented 4 times repeatedly. Hence. the patterns are shifted at 100ms
interval. At first. we chose a set of 25 neurons as the spatially continuous ones
forming a pattern. After the interval. the 25 neurons are shifted. This condition
yields a continuously changing pattern in which each center position of the neu-
rons represents the stimuli. This is a simple case, while general case is discussed
in Section 3. The neurons at the Output layers (OL) also receive 100 excitatory
and 50 inhibitory inputs firing randomly at other input layers (OILs).

We determine the conduction delay DgE. from input neuron ¢ at ILI to ex-
citatory neuron j at OL, proportional to distance in such a manner that the
periodical boundary condition is satisfied. That is

DZE « i — jl moa N (2)
where i and j are neuron indices, and we define
l' _J' mod N = Illill(li—jI,N = |l—.’|) (3)

Since the number of inhibitory output neurons is half of the input-neurons num-
ber, the delay D@' from input neuron i at IL1 to the inhibitory neuron j at OL
is determined to be proportion to [i = 2j| mea x+ Which should also satisfy pe-
riodical boundary condition. The maximum conduction delay is 3ms, while the
minimum is Oms. The probability that an input neuron is connected to output
neuron is 0.8. and the initial values of the synaptic strength are chosen about the
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1 12 presynaptic neuren
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Fig. 2. (a) Window function of STDP.(b) Time Diagram showing that only spike pairs
connected by arrows contribute to plasticity (near-neighbor interaction).
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half of the maximum. STDP was implemented only for the excitatory synapses
of the output layer’s neurons,

;_ JAsexp(-Atl/T.) At>0 4
A {A_ exp(—At/r.) otherwise (4)

where A, and A_ are the sizes of the synaptic modification by a single STDP
event. We chose A, = 0.02, A_ = 0.025. and 7+ = 7. = 20ms. LTD is im-
plemented only after the latest firing and LTP is implemented after the last
firing (near-neighbor interaction). When one firing pattern is presented. the in-
put spikes eclicit a postsynaptic response, triggering the STDP rule. Synapses
carrying input spikes just preceding the postsynaptic ones are potentiated, later
ones are depressed. This modification causes a decrease of the postsynaptic spike
latency. Hence, at the next time, when this input pattern is presented, firing
threshold will be reached sooner. Consequently. some synapses it had previously
potentiated are depressed and different synapses are reinforced which carry even
carlier spikes than the preceding time. By iteration. the postsynaptic spike la-
tency will tend to stabilize at a minimal value while the first synapses become
fully potentiated and later ones fully depressed[12].
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Fig. 3. (a) Spike raster showing the activity of the neurons at Input Layer 1. (b)
Raster plot of excitatory neurons at Output Layer. (¢)(d) Coincident clustered
histgram of (a),(b). (e) Conduction delays map. (f) Weight distribution.
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In this network. inhibitory neurons receive similar inputs to excitatory ney,.
rons and excitatory synapses of inhibitory ones are modified. Therefore, the
changes of the postsynaptic spike latencies of inhibitory neurons are almost iy
keeping with excitatory ones. Therefore, this network can work as a coincidence
detector. even if the synaptic efficiency has changed during learning.

To investigate a degree of spatiotemporal clustering, we calculated * coincj.
dent clustering histogram™. If a difference of firing time of two neurons is within
a time bin AT. we considered that these two neurons are coincident, and com-

puted spatial difference histogram 3, ex(i = j).

.. f1 |-t < AT
cx(i - Jj) = {0 otherwise ®)

where t* denotes the firing time of neuron i for input pattern k. The simulation
result is shown in Fig. 3. The synapses only with shortest conduction delays
survive and others were pruned. It also reduces noise firing. As a result, STDP
refines the patterns.

3 Topological Map

Next. we consider the more general input patterns to relate this model with the
topological map. In the topological map. the input patterns near to each other are
mapped into spatially similar firing clusters. Here, we denote the firing patterns,
€k = {gk,-..€k.-.. €5} where j is the neuron index at IL1 (the maximum
N = 100) and k is the pattern index switched at a certain interval. If the neuron
J fires synchronously with others, we denote §;, = 1. We assume that €* satisfies

S =R (Vk=1,2,---,N) (6)
J

g-e=¢-8=.=¢€"-¢ =Rm ™

where m is the overlap of patterns. The high m means continuous pattern shift.
In the previous sections, these parameters are kept with R =25, m = 0.96.

In Section 2. the set of synchronous firing neurons was spatially continuous.
Here, as a substitute for random conduction delays, we consider the case of
shuffled input patterns. We choose a pair of neurons randomly, and exchange the
indices of the neurons M times. We determined the shuffling times as M = 400
except the result of Fig. 4(a). M=100. After this shuffling, the firing pattern n*
also satisfies the condition expressed as

lej =R (V],: 12[\') (8)

ent=ntoP=-.=9" ' =Rm 9)

We determined the dispersion of the synchronized pattern as ¢ = 3.0ms. These
patterns with large dispersion are considered to correspond to the Poisson input
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Fig. 4. Topological Mapping. Two typical output patterns are shown. (a).(b) Raster
plot of the ncurons at 1L1. (c),(d) Raster plot of the excitatory neurons at OL.

patterns(3]. The recurrent synapse is needed to form a smoothed map. We deter-
mine the conduction delay D,’;’ from excitatory neuron 7 to excitatory neuron
J in proportion to |i = | moa n in the range of [0.5, 1.5]. We also determined
the delay DE! from excitatory neuron i to inhibitory neuron j in proportion to
[ = 2j] noa ~ in the same range. Hence, some of the neighboring connections are
shorter than the identical inhibitory conduction delay D! = 1.0ms. The initial
synaptic efficiencies are also determined in proportion to -‘},: — i = jl moa & in

the range of [0.25Wax. 0.75Wmax). where Wiax is the maximum efficiency
(Wmax = 0.05). In this paper, we assumed that there is only one neuron in each
column (m = 1). In cerebral cortex, however, there are much more neurons than
those in this model. It is reasonable that not all the neurons in a column fire
for each pattern. Some firings can cause the long-term potentiation of the other
connections that were not considered in this network model. Taking this into
consideration, the modification parameters of recurrent connections . are not
necessarily the same values as those of external connections A . We, therefore,
determined the sizes of the synaptic modifications for recurrent connections as
B, =0.02, B_ = 0.015.

The result is shown in Fig. 4 and Fig. 5. Two types of results are shown.
In Figs. 5(c) and (d), the gentle peak shows a synchronicity despite the asyn-
chronous input. Figures 5 (¢) and (f) show the change of the center position
of the firing neurons in each pattern. Figure 5 () shows that the center posi-
tion does not vary smoothly. This result suggests that the external stimulus is
coded into the highly-synchronously and spatially-continuously clustered firing.
However, such clusters do not always vary smoothly in space.

4 Interaction to different area

In this section, we investigate effects of interactions of two neurons distant from
cach other. We considered two types of conduction delays. For local connection,
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the synaptic delays are chosen in proportion to the location indices. With a
probability p, the synapse is determined to connect to neurons to a distant area.

We chose the conduction delays,

N(1,15) Probability p
EE _ ;
By = {[i — ] moa N + 0.5 otherwise 10}

where N means a Gaussian and the conduction delays from distant area are
determined to have a value in the range of |1, 30]. The center position of the
neurons firing for the certain patterns is considered to code a kind of information
such as location. We calculate a regression line of the center positions of the
neurons for all patterns. Since the patterns are changing in a certain period,
a trend of the recurrence is assumed to have a constant value. Therefore, we
calculate a y—intercept value to give a minimum value of mean squared error as
an index showing a smooth changing of the clusters.

E(b)* = min) (s — 0.01(zx — b))*
k
E-(b)" = min Xk:(yk +0.01(zx — b))?
E(b) = min(E..(b), E- (b)) (11)

Figure 6 shows the result. With a small probability ( p ~ 0.1), the clusters are
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Fig. 6. (a),(b),(c),(d) Examples of raster plot of output neurons for various initial
conditions. (c) A regression line for center position of the neurons. (f) Average Error
for diffcrent probability values p.

changing smoothly.

5 Discussion

The neurons in a primary visual area show different behavior depending on
the stimuli concurrently presented in their receptive-field surrounds. Such mod-
ulations are considered to be caused by interactions from different area. We
investigate the effects of long-delay connections when the input patterns are
changing in a certain period. Recurrent connections are needed to form the fir-
ing clusters. However, such clusters are not always varying smoothly in space.
The long-delay connections help to interpolate clusters that might be changing
discontinuously. When the neurons receive discontinuously changing patterns,
the firing clusters can vary smoothly in space. Through STDP, synaptic efficien-
cies are modified depending only on the pre- and post-spike timing of each firing.
Respective changing in efficiency can not utilize information of the whole pat-
terns. A highly adaptable initial condition is needed to organize itself suitably
to environment. We showed that an appropriate existence of long-delay connec-
tions interpolates firing clusters, which leads to the organization of firing clusters
varying smoothly in space.

In pattern recognition, the network learns patterns by using only small set
of samples. It is important ability for a network to retrieve patterns similar to
learned ones without being affected by small perturbations. On the other hand,
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Id of the neurons is confined only locally. Therefore, a mechg.

the receptive fie !
ging patterns into smoothly changing ones is alsq

nism to modify randomly chan
needed in the brain.

6 Conclusion

ation with locally synchronized patterns can

We demonstrated that self-organiz
between neurons. Through STDP,

be performed by tuning the conduction delays
spatially and temporally random patterns are bunching. The long-delay connec-
tion causes a topological mapping where such bunching clusters are changing
smoothly in space. As an important point in neural research, there is a ques-
tion of how the information is encoded and processed in the brain. These results
suggest that, as temporal rate is translated into the firing frequency, the neural

network utilizes both of temporal and population codes.
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